The Mandarax 3.0 Manual

The Mandarax Manual

Jens Dietrich

Institute of Information Sciences & Technology
Te Kura Putaiao o Hangarau-a-Mohiotanga
Massey University

Palmerston North

New Zealand

j.b.dietrich@massey.ac.nz

Ver si on: 8-Dec-03

made with:

OEe;OH iceorg1:1

141

The Mandarax 3.0 Manual

Table of Content

ACKNOWLED GMENT S ...t e e e e e e e s bbb e e e e e e e s e s s ab e et e e aeeeeeessaabbreeeeeeaaseeaan 3
) 1[0 s 1R 4
N S AN I N I L\ SO 4
THE MANDARAX DISTRIBUTION. 11ttttiiiiiiiitrtietiesiiesiibseteeesee st essesabasssestessseessasssbsssseessesssessasabssssaesesssesssassssbssseneses 4
BUILDING IMANDARAXceiieeiieeitteetieesee e e ee s baatb et eesseesssasasbaaaeeeaeessaassasbeessaasessabbasbeeesesseesssnsbassesessessasbebannnsaasss 4
IMIANDARAX EXECUTABLES. ... uttttteeitieeeieieiitittteeeeesee et sestasbeeeseesesasasbasesessessaaass st basseesessseesssabebeeeseesesesssnbareseesennan 5
LOGICAL OBUIECT S ittt ettt e e e e e e s e st b e sereeeaesseasaabeseeeeeaessasbaseeessasbsseeeesessanssssres 5
RULES, FFACTS AND TERMS.citvvutituteiireiererersressssssssssssassassasssssesssassessasasesessesseestereseresseereresetererseessrsssrsrsrsssrsssns 5
CREATING L OGICAL OBIECTS. ... cittttetiiiie e e s sei ittt e ee e e e s s es b e e s e s s saab e et e e s sa bbb e eassessbbb e e s e s s abbeaaeeasesssasbabbebeseessessansns 7
LT U1 = = (=TT 8
MAINTAINING THE KNOWLEDGE BASE........ooo oottt ettt e s tan e s eaae e e s snveee s 8
ADDING AND REMOVING KNOWLEDGE. ...eivtvveerutrutraeieeeisssisssiesessssssssieseseeeeressssessssssssssasssssssasssssessssssessesesreemreennns 8
RETRIEVING KINOWLEDGE. 11viiiiiiiiiitttetiies e e e ittt e be e e s e e se b bbb b e ae e e s s e s s abbb s beeeeseseeesaabba b eeeeeaessesssabbaeeeesseessasnsbbaeneaess 9
ORDERING KINOWLEDGE. ..1vttttiiiiiiisieiettieiieeeesssssbeseeessesssssasbbasseessessassassbasseeseesssessasabebasessessssssesssbbeseessssessasssrren 9
ISSUING QUERIES.......o oottt ettt st e et e e st e et e e eate e e aate e ente s e aeeesateeesaeeeeasaeesaseeenneeesnneennnes 9
UNDERSTANDING THE |NFERENCE PROCESS....cvuttttttitiiiiiii i it iie e ee e e e eeeeeeeeraeessessaba e sessssesssasaeasasesasesessssssrasnrans 9
BACKWARD VS, FORWARD REASONING. ..vvttiiiiiiiiiitittieiiee e e e e sttt et e e s e e e seebababeeeeeseessasbabbaseeesseessessarbsseeeeseessasnen 10
USING THE SEMANTICS. ¢ utututttttieieeeiieesisbatbessseassesssessasssssseseesssassassaasbasbaseseesseessssassbebasaseesssassessassbbrasnaeassssseas 11
VVORKING WITH RESULTS. .. tttie e e ettt e eetttee e ettt e e ettt e e aee e e s et e e e e eaeaeeessabaeeeeantbeeesesaeeaesasbeneesanbessesasnseeesssrenesenn 12
SIS = T = 1= TSR 14
CUSTOMIZING THE INFERENCE ENGINE...1etiiiiiiiiie ettt e e e ettt eee e s e s s e bbbttt s easesesesssabbaabereseasesessessassnnnes 15
INTEGRATING KNOWLEDGE FROM DATABASESottt ettt aate et e s s aanee s 16
CONNECTING TO THE D AT ABASE. .. .uuututtiiitieeeiiieessstereeeeteesesesessissssseeessesssessasssabssaseeeseasssssssssssbassesessessssssnssnsres 16
SQL PREDICATES AND SQL CLAUSE SETS...uttiitiiiiiieiiieeiiitesiseestaessieessteessesssbasssssesssbaessseesssesssteessssessnsessnseens 16
S @ | IR V] 5 T N SRR 17
INTEGRATING THE JAVA OBJIECT MODEL.....ccutttiiiiiii ettt saareereee e s ssabvnnees 18
JFUNCTIONS AND DYNABEANFUNCTIONS.ciiiiiiciitttett et e et e e e e e e e e e st e e e e e e e s e s e saabbaeaeeseesseessasssrbnnnns 18
B Ty 1 =2 TR 19
F AN o) o £ RO 19
THE MANDARAX LIBRARIES.....ceiiiiiiiiiiieieeeieessesatsssss s sessssesssesssasasasaseseessesereresessrassssbasassssassasssasssseessessasssenens 20
THE XKB XML INTERFAGCE ...ttt ettt ettt e s et e s e eaaae s s baeee s s sntaeesenteeessnnnneeas 20
IMIANAGERS AND DDIRIVERS. .11ttuttuieeeisieieteiiesseeesieeeeeeeesssssssasessssesssasasaassassseseesssssssseseerersrassreressssssssrasassnnsassnsesss 20
THE RULEML DRIVER(S) vt terteeutestestestestesiteseestesttestasesaessesee e seesseessesesaesbesaesaesseesbesseessesbesbeseesbesaeeneesaessennn 21
THE GeENERIC DRIVER AND HOW TO SETUP YOUR OWN DRIVER....uvttiiieiiiiiiiittiie e e eeesrarere e s s s s essabesaees s s e s snnnnnes 21
XKB VERSUS RULEML ...ttt ettt ettt e e e e e ettt bbb e e e e e e e e e e sabaaabeeeeeaesessasababebeeeeeesesnnsbnnnes 22
THE ZKB FRAMEWORK: AN ALTERNATIVE XML INTERFACE.......cccc.ccciiiiiiiiieeeee e 23
OV ERVIEW. 1t ttttttetieee et e eee st baeee et e e e s easa b bseseeeeeaseessassbasbeeaeeseaesseesabaaeaeeseeasee s s b as e s easeaeseessassnstbebenesasessessanssnsren 23
RIS (= Y TN = TR 23
WA = NI ST I= T 4 1 = T 24
IMPLEMENTING A CUSTOM OPS..... . ittt ittt et e e e s s et e e e e e e e e e e sa s ba b b abeeeeessssbbbsbeeseeseseesansssren 24

2/41

The Mandarax 3.0 Manual

THE MANDARAX JDBC DRIVER......c oottt ettt e s st e s saaee s s s svae e s e e snrbeeesrees 24
THE DRIVER DESIGNvtieiiiiteie e ettt e et ee e st e e s et e s s esaaes s s st b e e e seasbaesessasseeasebeeesenbaesseanbeseeessabbeeesensseessnnnenes 24
OBTAINING A LOCAL CONNECTION .. uutuutteriieetesiisiissssssseesessssesssssssrssstessessssesssbsssseessesinssssrsssseessesssesissssssssseesses 25
OBTAINING A INETWORK CONNECTION ... ctetiettuereeerieeesessessasssssessseesessssessssssssssssssessesssssssnssssssssesssessessssensssssnsses 25
| SSUING QQUERIES. 1v1uvteeiuteessuresssesssusessssasasssessssaessstesasseesssteesseessasee e b beenabeeeseee s be e e naeeesseeeaabeeeabeeasnneennsteannbenas 26
THE JDBC EXAMPLE A PPLICATION.....cttesetsvtteeeteesessssssssssesesesssssssssssssssssessssssessssssssseessssssessssssssssessessssssssssssses 27
UsiNG MANDARAX JDBC WITH GENERIC DATABASE CLIENTS . uuiiiiiiiieeiiieiiieiieiiissitsaibssissstssreeeeseeseeseseessessessssnnes 28

Y S O I N N 10 28
eI 28
LSS O =TS 29
)TN == 30

L I =1 N S O N1 SO 30
[30
Y N oY TS el = O 2 OO 31

APPENDIX A — REQUIRED LIBRARIES........oo ettt ettt s sn et s 31

APPENDIX B - DIAGRAMS ...ttt ettt e s e te s e s st e s s saba e e s s ebbesssabeeeesssbesessasbeneessnnnes 33

APPENDIX C — PROJECT HISTORY ..ottt ee st e e s e st ae s s saan e s s s sata e s s sebenssanassannneeean 36

ALPHABETICAL INDEX ...ttt ettt s ettt e s s st be s s ssbaes s sesbaaesssasbaesssabaasssssssasessasbasesssssrenessanes 39

BIBLIOGRAIPHY ..ottt ettt e et e e et e e e s ettt e e s ses et esssaaeeeseateeessasssaeessassaeessasseessssssseessaarenessad 41

Acknowledgments

The author would like to thank the following people and organizations: Sour ceFor ge. net for
doing such a great job, Bauer & Partner Software and Consulting (my former employer) for
sponsoring the mandarax web site, the Polytechnic of Namibia (another former employer) and
Massey University NZ (my current employer) for supporting the mandarax research project, and
the following individuals for their contributions to the mandarax project: Jochen Hiller (Bauer &
Partner), David Li (Digital Sesame), Chen Jianbo (China Telecom Guangzhou R & D Center),
Alex Kozlenkov (City University London), Hans-Henning Wiesner (Bauer & Partner), Wang
Liangbin (Donghua University in Shanghai/China) and Robert Searle (Platinum Architecture
Group).

3/41

The Mandarax 3.0 Manual

Synopsis
Mandarax is an open source' java library for inference rules. This includes the representation,

persistence, exchange, management and processing (querying) of rule bases. The main objective
of mandarax is to provide a pure object oriented platform for rule based systems.

Installation

The Mandarax Distribution

Mandarax is distributed as a zip archive. The current version of this zip file can be downloaded
from sour cef or ge. net/ pr oj ect s/ mandar ax. First unzip this file into a folder (for instance,
named mandarax_hone) (c:\mandarax for windows or / hone/ nysel f/ mandar ax for
Unix/Linux).

The mandarax folder has the following file structure:

Folder/File Content
bui I d. bat Windows build script
bui I d. sh Unix build script
bui I d. xm ant build script
bi n/ contains apache ant (build tool)
bui | d/ Contains the compiled mandarax classes and libraries. If this folder is

missing or empty, the build still has to be performed (using bui | d. bat
or bui | d. sh, respectively)

confi g/ Miscellaneous files including a JIndent configuration file and a manifest
template used for building the jar files

docs/ Contains the manual, a TODOand a Changelog text file.

l'ib/ 3" Party Libraries (as jar files) mandarax needs.

src/ The mandarax source code.

t mpt est dat a/ This folder will be used to store files generated by mandarax test cases.

Table1 The Structure of the Mandar ax Distribution.

Building Mandarax

1 GNU Lesser General Public License

4/41

The Mandarax 3.0 Manual

Building mandarax will compile the source code, build the jar files and create the javadocs. To
build mandarax, open a shell window or dos command prompt, cd to mandar ax_hone and run
bui I d. sh (Unix) or bui | d. bat (Windows). This will compile the classes (bui | d/ cl asses),
build the jar files (bui | d/ | i b) and the j avadoc documentation (docs/ api).

Troubleshooting

Problem: The JDK cannot be found.

Solution: Check your JDK installation. In particular, make sure that the environment variable
JAVA_HOME is set correctly and points to the folder where the JDK is installed (and not to the
bin sub folder).

Problem: The build fails with a message indicating that the JDK version is wrong.

Solution: Check your JDK installation. In particular, make sure that the environment variable
JAVA_HOME is set correctly and points to the folder where a the JDK version 1.4 or better is
installed. Verify this with the command j ava -ver si on.

Problem: The build fails and a message “ ANT_HOVE nust be set first” isdisplayed.
Solution: Set the ANT_HOVE environment variable. To use the ant installation that is part of the
mandarax installation, run the following command (mandar ax_hone must be replaced by the
real path):

set ANT_HOVE=nmandar ax_hone\ bi n\ apache-ant-1.5. 2

For Linux, read the documentation of your shell to find out how to set environment variables.
You can also set a global variable. For the windows platform, the configuration form is located in
Configuration — System - Advanced.

Mandarax Executables

Mandarax is a class library, so there is no mandarax main class. However, there are some classes
in the t est and or g. mandar ax. exanpl e packages that are executable. In order to execute
them, all libraries in the | i b and in the bui | d/ I i b folder must be in the class path.

Logical Objects

Rules, Facts and Terms

Java interfaces and classes represent the various elements in logical expressions. We explain these
objects using an example. Consider the following sentence:

If the turnover of a customer was more than 100$ in the year 2002 then the customer gets a discount of 5%.

This sentence can be decomposed as follows:

5/41

The Mandarax 3.0 Manual

If the turnover of a customer was more than 100$ in the year 2002 then the customer gets a discount of 5%
If the turnover of a customer was more than 1003 in the year 2002
more than
the turnover of a customer in the year 2002
the turnover
acustomer
in the year 2002
100 $
the customer gets a discount of 5%
gets discount
the customer
5%

The top — level construct is called a rule. A rule associates one or many prerequisites with one
conclusion. Sometimes the prerequisites are also called the body of the rule, while the conclusion is
called its head. The meaning of a rule is simple: whenever all prerequisites are true, the conclusion
is true as well. Usually the prerequisites of a rule are connected using “and”, meaning that all
prerequisites must be satisfied. Prerequisites can also be connected by “or”. This means that the
conclusion is true if at least one of the prerequisites is true.

The prerequisites and the conclusion are facts. Facts can also occur standalone, for instance “M ax
spent 42 $ in 2002”. The facts themselves consist of terms and a predicates associating those terms.
In the example above, “more than” and “gets discount” are both predicates, while “100$”, “5$”,
“a customer” and “the turnover of a customer in the year 2002” are terms. Speaking OO, terms
represent objects. Predicates on the other hand represent a relationship between terms.

There are three different kinds of terms: constant terms, variable terms and complex terms. Constant
terms are more or less concrete objects like “5 %" or “100% ” in the example. On the other hand, “a
customer”is a variable. It is a kind of proxy that can be replaced by concrete terms if needed. This
makes in particular sense for rules, since otherwise we would need a separate rule for each
customer. Finally, complex terms are terms that can be computed from other terms. In the
example “the turnover of a customer in the year 2002” is a complex term. The function “t urnover
of a customer in a certain time” is an instruction how to build a new term from two other terms.
The terms inside a complex term can again be constant, variable or complex.

Terms are typed. In line with the object-oriented approach, mandarax types are (arbitrary) java
classes. Primitives such asi nt and bool ean are represented by their respective wrapper classes.

In the last example, terms would be associated with the following types:

If the turnover of a customer was more than 100$ in the year 2002 then the customer gets a discount of 5%
If the turnover of a customer was more than 100$ in the year 2002 // prerequisite

more than /I predicate
the turnover of a customer in the year 2002 // complex term
the turnover /[function
acustomer /I variable term, typeiscom nmyconpany. Cust oner
in the year 2002 /I constant term, typeisint
100 $ /I constant term, type is float
the customer getsadiscount of 5% // conclusion
gets discount /I predicate
the customer /I variable term, typeiscom myconpany. Cust oner
5% // constant term, typeiscom nyconpany. Di scount

Predicates associate terms of a certain type. This is called the structure of a predicate. For instance, the
structure of the “gets discount” predicate is{ Cust oner. cl ass, Di scount . cl ass} (the package

6/41

The Mandarax 3.0 Manual

names are omitted). This is an array of j ava. | ang. d ass ingstances indicating the the predicate is an
association between customers and discounts.

With a set of rules like this one can issue queries like“what is discount customer John
Smith qualifies for”.If thereisafact suchas“the custoner John Smth purchased
goods for 120 $ in 2002" then the answer would be 5% This statement would be a fact
supporting the rule. We then have aruleif A then B, afact A and can prove B based on this. This
derivation is the responsibility of aninference engine introduced later in this document. The computation
performed by an inference engine is not trivial: it performs term replacements (a custoner' is
replaced by ' John Smit h'), it can handle recursion (it can proveCfromA, 'if A then B,'if B
t hen C) and more. In particular, in mandarax it is not necessary to add facts like“t he cust onmer
John Smith purchased goods for 120 $ in 2002" explicitly, instead these facts can be
built on the fly from database queries or java objects.

Creating Logical Objects

Instances of the respective interfaces for rules, facts and terms are created using a logic factory
object. Mandarax contains a reference implementation for each interface in the ref er ence
package. The default logic factory can be accessed using

1 or g. mandar ax. ker nel . Logi cFact ory. get Def aul t Factory().

By default, this method returns an instance of the implementation class
or g. mandar ax. ref erence. Def aul t Logi cFact ory. The class Logi cFact ory has a “soft”
reference to this class (using Cl ass. f or Nane()). The reason is that the ker nel package should
not depend on the reference implementation. Therefore, if the reference implementation package
is not in the classpath, this method returns nul | .

The methods in the logic factory are simple. For instance, a variable term of the type customer
could be created using the following code:

Logi cFactory factory = Logi cFactory. get Def aul t Factory();

Termternl = factory.createVariabl eTern(“a custoner”, Custoner. cl ass);

Di scount di scount = new Di scount (5);

TermternR = factory. createConstant Tern(di scount);

Tern[] terms = {ternsl, ternk};

Class[] predicateStructure = {Custoner.cl ass, Di scount. cl ass};

Predicate predicate = new Si npl ePredi cate(“gets discount”, predicateStructure);
Fact fact = factory.createFact(predicate,termns);

O~NOO_WNE

In a situation where Di scount is an interface and Di scount | npl is an implementation class,
the type must be specified. The code could look as follows:

Logi cFactory factory = Logi cFactory. get Def aul t Factory();

Termternl = factory.createVariabl eTern(“a custoner”, Cust oner. cl ass);

Di scount di scount = new Di scount | npl (5);

TermternR = factory. createConstant Tern(di scount,Di scount. cl ass);

Tern{] terms = {ternsl,ternk};

Class[] predicateStructure = {Custoner.cl ass, Di scount. cl ass};

Predi cate predicate = new Sinpl ePredi cate(“gets discount”, predi cateStructure);
Fact fact = factory.createFact(predicate,termns);

O~NO U~ WN P

In the util package there is a similar class Logi cFact or ySupport adding further utility
methods to create facts, terms, rules and queries.

7141

The Mandarax 3.0 Manua
Clause Sets

In logic programming, facts and rules together are often called clauses. Most rule systems use a
collection or list of clauses to represent knowledge. In real world applications, this approach has
some fundamental flaws. Consider the following example:

If the favorite color of acustomer is red then send him the special offer ABC.

Most rule systems would represent this rule together with facts like:

The drivers license number of Max is 12345.
The drivers license number of John is 424242.

The disadvantage is that these facts are usually built from data stored in some kind of database.
The database could be anything from local files to web sources, most often it is a relational
database. Therefore we must replicate the database into the knowledge base (which is usually in
memory). This can be very expensive if the database base is large. What is more, many
applications will need real time facts. This would mean that knowledge base and database must
be synchronized at the very time a query is issued.

To avoid this situation, Mandarax uses clause sets instead of clauses. Clause sets are basically
iterators over collections of clauses. In the example given, such a clause set could be defined
around a JDBC-SQL query: the query returns a result set and the clause set builds facts from the
records at query time. Replication of data is therefore not necessary any more’. Clause sets are
downward compatible: rules and facts are considered as singleton clause sets.

Clause sets have many applications. We just sketch afew:

1. Clause sets are used by mandarax in order to deal with rules with prerequisites connected by “or”.
Such arule“if A or B then C' isinterpreted as a clause set comprising the two simple
rules(clauses)“if A then C and“if B then C'.

2. Imagine you want to design a“learning” knowledge base. Such a knowledge base could contain a
clause set with an iterator that prompts the user to confirm a fact. If confirmed, the clause set
contains this one fact; if rejected, it contains no facts at all.

3. Collaboration between agents could be implemented by a clause set that issues a query to another
inference engine / knowledge base pair, the answer is the set of clauses defined by the query and
the respective variable substitutions in the result set.

4. Clause sets based on an SQL queries. Mandarax contains several classes supporting this, for
details see “ SQL Predicates and SQL Clause Sets' on page 16.

5. The Mandarax Aut oFact s class build facts dynamically from sets of objects. For details see
AutoFacts on page 19.

Maintaining the Knowledge Base

Adding and Removing Knowledge

2 Besides the respective implementation has a built-in transparent caching mechanism that can be used for
performance improvement if real time data arenot required.

8/41

The Mandarax 3.0 Manual

Knowledge bases are containers for clause sets. The interface for knowledge bases is
or g. mandar ax. ker nel . Know edgeBase. The basic methods defined in this interface are add
() and renove(), both taking a clause set as parameter. The r enbveAl | () method clears the
knowledge base.

Knowledge bases propagate changes using clause set change events. The respective methods to
register and unregistered clause set listeners are also declared in Know edgeBase. However, not
all changes in the fact base will trigger clause set change events to be fired. For example, if the
clause set describes a set of facts built on the fly from the result set of an SQL query, the fact base
changes whenever the database changes. Usually, the knowledge base will not be aware of this
and won't fire an event. But such changes affect only clauses, not the clause sets. And the
inference engine pulls knowledge from the knowledge base when processing a query and
therefore does not rely on the change events fired by the knowledge base.

Retrieving Knowledge

The content of a knowledge base can be easily retrieved usingget G auseSet (). Clause sets are
indexed by a key. Clause sets implement a get Key() method to provide this key. Although this
is not enforced (get Key() returns in fact an instance of Cbj ect), the key is usually a predicate
(the predicate of the fact or, in case of rules, the predicate of the head of the rule). Knowledge
bases may index clause sets by this key in order to ensure fast access to clause sets by inference
engines. One flavor of get O auseSet s() takes a key object as parameter.

Ordering Knowledge

The interface or g. mandar ax. ker nel . Ext endedkKnowl edgeBase extends Knowl edgeBase
and provides additional methods to move clause sets up, down, to the button and to the top. This
implies some linear structure in the knowledge base that can be seen as the order imposed by
priorities associated with clause sets. The lists returned by get Cl auseSet () should respect this
order. This has certain implications for the inference engine: the engine will try to use the first
clause sets first in proofs. Hence different orders might lead to different query results.

In version 2.2, a comparator property has been introduced (in Ext endedKnowl edgeBase). If a
comparator is set, knowledge objects will be ordered by this comparator. The package
org. mandarax. util . conparators contains a default comparator class
Def aul t O auseSet Conpar at or. This class implements some strategies like:

» Prefer facts and SQL clause sets over rules
» Prefer facts with less variables
+ Prefer rules with more prerequisites

+ Prefer rules with less negated prerequisites

These strategies basically express that knowledge we consider to be more precise or more sound
should be preferred over vague knowledge.

Issuing Queries

Understanding the Inference Process

9/41

The Mandarax 3.0 Manual

The main reason that we set up and maintain a knowledge base is to retrieve knowledge from it.
For this purpose, a query must be issued A query is more or less a fact that contains some (query)
variables. In the answer of the query we expect that the variables are replaced by objects.

Example

Q: How much discount gets customer X?
A: X gets 5% discount. (The formal answer is X / 5%)

Q: Who killed Mr. Holmes and where did it happen?
A: The hound of Baskerville killed Mr. Holmes in the swamps. (The formal answer iswho/hound of
Baskervi |l | e; wher e/swanps).

The algorithm used to find these replacements is implemented in a so-called inference engine. The
interface for inference engines is or g. mandar ax. ker nel . I nf er enceEngi ne. The inference
engine takes a query’ and a knowledge base as input and returns an instance of
or g. mandar ax. ker nel . Resul t Set. This result set instance knows the replacements and has
an object representation of the proof supporting the result.

Backward vs. Forward Reasoning

The mandarax inference engine uses backward reasoning, and the reference implementation uses an
object-oriented version of backward reasoning similar to the algorithm used in Prolog. On the
other hand, most commercial rule systems such as ILOG and popular open source solutions like
CLIPS and JESS use forward reasoning, in particular an algorithm called RETE. This algorithm
keeps the derivation structure in memory and propagates changes in the rule and fact base. This
can be very effective. However, we see the following advantages in the backward reasoning
approach:

1. The effective integration of facts from arbitrary data sources. In forward reasoning,
additional software must watch these data sources and must propagate changes in those
data sources in order to keep the derivation structure up to date. This can be difficult in
particular for relational databases: databases do not propagate changes in their data*, and
if real time facts are needed the database and the fact base must be synchronized before a
query is issued!

2. This is part of a more general pattern: most business solutions implement a pull model,
like a sales transaction initiated by a web store customer. In particular, system
architectures using a web clients and SQL databases are usually based on a pull model as
they are using request based protocols such as HTTP and SQL network protocols
(SQLNet etc). In this system landscape it is (at least) very difficult to implement a push
model. An example would be a database trigger that triggers an event that is then
propagated through the middle ware layer to the web client where a web page is updated
automatically without user interaction’. The query driven backward reasoning fits

3 Note that in versions prior to 1.9 there was no separate query type. Instead, facts were used. A query is
more general: queries can contain many query facts. To facilitate the migration of applications from 1.8 to
1.9, Fact | npl implementsthe Quer y interface and can therefore be casted toQuer y.

4 Some databases have an event concept called triggers. But connecting triggers with javaclientsis not
straightforward and there are no standards supporting this.

5There is no doubt that this can be done in principle, for instance with triggers sending JM S messages to the
middle ware and with aweb server using pushlets to update the web site. The claim we are making is that
HTTP and SQL network protocols have not been designed for this and that the quality of such asolutionis
inherently poor.

10/41

The Mandarax 3.0 Manual

perfectly into this architecture. A push model architecture can still be implemented using
mandarax, for instance by using a demon (kind of push-pull adapter) that frequently
issues queries and fires events (pushes information) depending on the result of the query.
The mandarax ECA subproject uses this approach.

3. Many rule systems are working on large fact bases (like the customer database) but a
rather small rule base (by small we mean some hundreds, but not ten thousands of rules).
Large rule bases quickly become extremely difficult to understand and to maintain. For
such small rule bases, there is no significant difference regarding performance between
backward and forward reasoning. On the other hand, mandarax takes advantage of
existing technologies managing large fact bases (like SQL databases with services such as
indexing and query optimizing).

web client (browser)

http i

proxy

web server

middleware

mandarax
rule engine

sql query

il

=
database

Figure 1 A query based ruleenginein a
typical 3-tier (pull) architecture

Using the Semantics

Backward reasoning algorithms are based o formal (syntactical) reasoning. They take only the
syntax of the terms and other logical objects into account. Suppose we have a rule “if 2+2=4 then
math works” and a query “does math work?”. The pure algorithm could not proof this since
“2+2=4" is just a sequence of objects and the algorithm does not know how to interpret + and =.
Of course, most rule system are aware of this and implement some kind of support for these
situations. This means, they integrate the meaning or the semantics of the respective expressions.
Mandarax goes one step further and distinguish between semantic and non-semantic objects.
There is an interface or g. mandar ax. ker nel . Semant i csSupport with a single method
bool ean isExecutabl e(). This method can be used to find out whether the respective object

11/41

The Mandarax 3.0 Manual

supports the semantics or not. Terms, rules, facts, predicates and functions all implement this
interface.

We illustrate how this works with an example:

Example

Imaging thereisarule “if the turnover of a customer X is more than 100 give him a discount of 5%” and a query
“get the discount of customer Tom”. The turnover of a customer X function is defined by aSQL query to a
relational database something like “ SELECT SUM TURNOVER) FROM CUSTOVER _TRANSACTI ONS
VWHERE NAME=?". How to do it in detail is explained on page 17. The inference engine can answer the query
without any additional fact using the meaning of “is more than” (thisis actually the meaning of the < operator in
java) plus the result of performing the SQL query with the input parameter “?:=Tom”".

This process is completely transparent: after every proof step the inference engine tries to simplify the list of goals
using this semantic evaluation. In order to ease the composition of semantic objects (predicates and functions), the
org. mandar ax. | i b packages contain numerous predicates and functions wrapping java functionality for
numbers, strings and dates. The or g. mandar ax. sgl package contains generic predicates and functions using
the semantics of database queries, and theor g. mandar ax. ker nel . net a package contains generic classes to
integrate the semantics of java methods.

Working with Results

The inference engine returns the result as an instance of or g. mandar ax. ker nel . Resul t Set,
a structure very similar to the result set used in JDBC®. The methods next () and previ ous()

can be used to navigate through the result set. Both methods return t r ue if the cursor has been
moved to a valid position and f al se otherwise. Note that the number of results does not only
depend on the query and the knowledge base, but also on the cardinality constraint passed to the
query. Only if the constraint is | nf erenceEngi ne. ALL all results will be returned. The
specification leaves it open whether all results should be fetched at once or ‘on demand’. In fact,
the later ‘lazy’ approach is more suitable for (enterprise) server applications. However, the
current implementation of an inference engine supporting —multiple results
(Resol uti onl nf er enceEngi ne2) fetches all results at once.

If the result set cursor is positioned on a valid position, results can be fetched similar to fetching
column values in a JDBC query. Instead of a column name, the variable (or the type and the value
of the variable) must be passed. The following code shows how to issue a query and how to fetch
values from the result set:

6 Prior to Mandarax version 1.7 there was a different query API using aResul t class. The reason to move
to amore JDBC like API isto support JDBC experienced programmers in using mandarax.

12/41

The Mandarax 3.0 Manual

Example

1 Logi cFact orySupport |fs = new Logi cFact orySupport ();

2 Knowl edgeBase kb = ..;

3 Predicate isOncleO™X = ..;

4 Fact queryFact = Ifs.fact(isOncleO,|fs.variable(“onlce”, Person.class),|fs(new

Person(“Max")));
Query query = | fs.query(queryFact,”get the oncle of Max");
I nf erenceEngi ne i e = new Resol uti onl nferenceEngi ne2();
ResultSet rs = ie.query(query, kb, ie.ALL,ie. BUBBLE_EXCEPTI ONS);
while (rs.next()) {

Systemout.print (“The oncle of Max is ");

System out. println(rs. getResult(Person. cl ass, "oncle”));

PR O©~NO U

= O

Note that some of the methods used may throw exceptions. Exception handling code is omitted in
the last example. The internal exception handing of the inference engine can be configured using
the exception handling policy parameter passed to query(). If the parameter is set to
BUBBLE_EXCEPTI ONS, each exception encountered when resolving clause sets leads to an
exception thrown by the inference engine and the inference process is canceled (pessimistic
approach). If the policy is set to TRY_NEXT, the inference engine ignores exceptions thrown by
clause sets and tries to continue the derivation with other clause sets (optimistic approach).

Although there is no separate result set meta data object as in JDBC, a list of variables replaced by
the query can be obtained by get Quer yVari abl es() .

Another important issue is to know how the inference engine computed these results. For this
purpose, Resul t Set has the get Pr oof () method that returns the derivation. The derivation is
organized as a tree of derivation nodes. Inference engines return a tree comprising all nodes
supporting the derivation. Optionally, nodes representing clauses not supporting the derivation
can be part of this tree as well but should respond toi sFai | ed() with true. The derivation
can be easily visualized, for instance by using a swing JTr ee component. Each node knows the
clause that has been applied and the unification used. This should help the user to understand the
derivation and to support the rule base development life cycle: run a query, understand the effects of
rules and make the rule base better. Another helpful tool that can be used in order to analyze the
derivation is the class or g. mandar ax. uti | . Proof Anal yzer.

13/41

The Mandarax 3.0 Manual

& Oryx Knowledge Base Editor,
File Edit View Tools Exarnples Links Deploy Help

® LD DREYID & %

=3 Knowledge P Queries ‘ 2 Aboutthis example

5 |
2
g ([2 Fnd pecuitsetMavigator: 44 48 [PR
= 2 Find
B 2 Fing
 Fing| || resut [options.
P,
Find result | replacements | derivation dres) | derivation (ist
® Find| || | ! -

[v] Show falled branches @ failed @ suppons this result & suppons another result

E if person 2 is the father of person 7 and person 3is the father of person 2 then person 3is the grandfatt
@ Lutz is the father of Frank
@ Otto is the father of Guenther
B @ Klaus is the father of Jens
@ Jens |z the father ofMax
@ Otto is the father ofKlaus
@ Otto is the father of Lutz
& Jens is the father of Max
& Klaus is the father of Jens
@ Lutz i3 the father of Ralf
@ Otto is the father ofWerner

CHERIID

‘ Family example 2 fwithout DE) |
Figure 2 Visualization of a derivation with a swing tree component
(using the Oryx extension)

Result Set Filters

Result set filters can be used in order to manipulate the result set. Filters themselves implement
the Resul t Set interface and are usually applied as wrappers (wrapping another result set). In
particular, filters can be used to achieve the following tasks:

— sort results in a result set

— apply aggregations functions

— filter results using boolean conditions (e.g., prefer results with short simple derivations)

— identify results (e.g., identify results with the same set of replacements but different
derivations)

— any combinations of the above mentioned filters (using a filter pipe).

Some filters are implemented in the org. mandarax. util.resultsetfilters package. In
particular, the following implementing classes are in this package:

Class name Description
OrderByFilter Sorts results.
G oupByFi |l ter Aggregated result.
WereFilter Filters results using a boolean expression.

Table 2 Mandarax predefined result set filters

As the names indicate, these filters provide functionality similar to the respective features in
relational databases. The following example show how to use an Or der By filter:

14/41

The Mandarax 3.0 Manual

ResultSet rs = ... // result set returned by inference engine

/1 define ORDER BY conditions

Vari abl eTerm NAME = (Vari abl eTerm) | fs. vari abl e("nanme", Stri ng.cl ass);

Vari abl eTerm FNAME = (Variabl eTerm | fs.variabl e("fnane", String.cl ass);
OrderByCondi tion[] cond = new O derByCondition[]{new ASC(NAME) , new ASC(FNAME) };
/1 sort results by (the replacenents for) name and first nane

rs = new OrderByFilter(rs, orderByConditions);

~NO OO~ WN R

Customizing the Inference Engine

The reference implementation package contains five inference engine implementation:

Resol uti onl nf er enceEngi ne, Resol uti onl nf er enceEngi ne2, Resol uti on
I nf erenceEngi ne3 , Resol utionl nferenceEngi ne4 and Def aul t | nf er enceEngi ne.
All Resol utionlnferenceEngi ne? classes extend a common super class

Abstract Resol uti onl nf er enceEngi ne. This super class can be used as a base class for
alternative implementations. The main difference between the implementations is the set of
features they implement.

Engine Multiple Negation as failure Cut
results
Resol uti onl nf er enceEngi ne NO NO NO
Resol uti onl nf erenceEngi nel YES NO NO
Resol uti onl nf erenceEngi ne2 YES YES NO
Resol uti onl nf erenceEngi ne3 YES YES YES

Table3 | nf er enceEngi ne Implementations

Our policy is to keep older implementations alive and to freeze development at a certain stage.
The advantage for ongoing projects is to have a more reliable engine not affected by the risks of
introducing new features. On the other hand, these older engines are in general slightly faster.
The supported features can be discovered at runtime using the get Feat ur eDescri pti ons()
method.

Def aul t I nf erenceEngi ne is simply a wrapper class that uses the latest stable
implementation as a delegate.

Engines are highly customizable. In particular, the following “sub algorithms” can be customized:

1. The selection policy used to select the next goal to proof (the default is
Lef t Most Sel ecti onPol i cy)

2. The unification algorithm (the default is Robi nsonsUni fi cati onAl gorit hm

3. The loop checking algorithm (the default is Nul | LoopChecki ngAl gorithm — that
means no loop checking at all)

In many cases these defaults work fine and modifications are not necessary. However, if the rule
base has circular dependencies and the proofs are running into loops, it is useful to replace the
loop-checking algorithm by or g. mandar ax. r ef er ence. Def aul t LoopChecki ng
Al gorithm This algorithm is neither a correct nor a complete loop checker in the strict
mathematical sense, but very effective to detect loops practical applications will encounter (kind
of 80/20 approach). This loop checker is suitable if one can estimate the recurrence patterns of

15/41

The Mandarax 3.0 Manual

applied clauses causing an infinite loop (number of recurrences indicating that we are in a loop,
and the max number of recurring patterns).

The reference implementation classes both have a property maxsteps. This integer value
specifies the maximum number of derivation steps the inference engine should perform before it
gives up. This is another mean to prevent looping.

Note that besides the sub algorithms mentioned and the MAXSTEPS variable inference engines do
not have state information. In particular, there is no query related information kept in instance
variables. Therefore, multiple threads can easily share a single inference engine. Only if different
engine configurations are required multiple instances (one per configuration) are necessary. On
the other hand, the knowledge base implementations have synchronized access methods. This
might not be appropriate for all application types. But considering that mandarax is open source
it is always an option to copy the class and remove the synchronize constraint from the access
methods.

The negation as failure feature can be used in order to negate prerequisites in rules. The meaning
of arule'if not A B then C is'if A can not be derived and B can be
derived then C can be derived as well'. That means that the proof of A must fail to
apply this rule successfully. Therefore, query processing with rule bases containing negation as
failure can be very expensive.

Integrating Knowledge from Databases

Connecting to the Database

When integrating knowledge from relational databases, we must first establish connections to the
database. Mandarax uses data sources instead of raw connections and therefore depends on the
j avax. sql standard extension package.

SQL Predicates and SQL Clause Sets

SQL predicates are basically database tables (or views) or a vertical part (i.e., selected columns) of
a table or view. An SQL predicate consists of the following components:

1. A data source that contains the info how to connect to the respective database. The data
source is an instance of j avax. sql . Dat aSour ce, therefore the or g. mandar ax. sql
package depends on this extension package.

2. A name.

3. A query. This query usually does not have a WHERE clause since the number of rows does
not matter. The purpose of the query is only to describe the structure (the columns with
their data types) of a result set. E.g., SELECT * FROM STUDENTS.

4. A type mapping. This type mapping describes how to map the values in the result set to
java types. The type mapping is an instance of or g. mandar ax. sql . TypeMappi ng. The
class Def aul t TypeMappi ng implements this interface and provides a type mapping
that should be sufficient for most purposes. By default, SQL predicates use this type
mapping. If the type mapping is nul |, the SQL predicate tries to issue a query in order to

16/41

The Mandarax 3.0 Manual

get the type mapping from the JDBC driver (using the method get Col uimC assNane
() in Resul t Set Met aDat a). Warning: not all JDBC drivers’ support this feature!

SQL clauses are implemented by or g. mandar ax. sql . SQLPr edi cat e, and access methods for
the respective features are implemented there.

An sql clause set (class or g. mandar ax. sql . SQLCl auseSet) is more or less an SQL predicate
plus an optional WHERE clause restricting the rows (and therefore the facts) in the result set. In
addition, SQL clause sets have an optional caching mechanism that can be used in order to re-use
facts built from the query. The mechanism can be configured using set CacheTi nmeout (),
expecting a number of milliseconds as parameter. In order to switch the cache off, pass
SQLA auseSet . NO_CACHE as parameter. This is the default setting.

Example

A predicate that associates father and son could be defined as follows:

TABLE FAM LY

\ NANVE \ FATHER
Max Jens
Jens Kl aus
Kl aus ato
Guent her ato
Qto nul |

Dat aSour ce dat aSource = . .;

Class[] struct = {String.class, String.class};

SQ.Predi cate predicate = new SQLPredicate();
predicate. setName("is father of");

predi cat e. set Query(“ SELECT NAME, FATHER FROM FAM LY");
pr edi cat e. set Dat aSour ce(dat aSour ce) ;

predicate.set Structure(struct);

~NOoO O~ WNE

SQL clause sets and SQL functions (see next section) both have a boolean property
cl oseConnect i on. If this property is set tot r ue, the connection used will be closed after each
database access. This can be useful in an application server environment where the data source
serves (wrapped) connections from a connection pool, and closing a connection returns the
connection to the pool of available connections.

SQL Functions

SQL functions are functions based on an SQL query. The idea is to take certain input parameters
(usually in the WHERE clause), and to build an object from the one row returned. It is the nature
of a function that it returns exactly one value, therefore an SQL function will throw an exception
when it is invoked and there are either no rows or more than one row in the (JDBC) result sef’.
SQL functions are implemented by or g. mandar ax. sql . SQLFuncti on. SQL functions have
the following properties:

7 In particular, we have encountered problems with the MySQL driveror g. gj t . nm nysql . Dri ver.
8 Thisissimilar to the usage of SQL queries as functions in the PL/SQL SELECT | NTO statement.

17/41

The Mandarax 3.0 Manual

—_

A data source (see SQL predicates)

A name.

3. A query string. This query string contains one or many ?s as placeholders for variables.
Note that internally the query string is translated into a prepared statement.

N

An object relational mapping (instance of or g. mandar ax. sql . Cbj ect Rel at i onal Mappi ng).
This mapping is responsible to take a record (the one row in the result set) and convert it into an
object. The most common case seems to be that the result set contains only one value (see
example), in this case the implementation class OneCol urmMappi ng can be used.

Example

A function that takes a customer name and returns the number of transactions of this customer could be defined as
follows:

8 String[] struct = {String.class};

9 Dat aSour ce dat aSource = ..;

10 SQ.Function function = new SQLFunction();

11 function. set Dat aSour ce(dat aSour ce) ;

12 function. set Query(“SELECT COUNT(*) FROM CUSTOVER TRANSACTI ONS WHERE CUSTOVER=?");
13 function. set Obj ect Rel ati onal Mappi ng(new OneCol ummMappi ng(| nt eger. cl ass));

14 function. set Name("nunmber of all transactions of a customer");

15 function.setStructure(struct);

TABLE CUSTOVER TRANSACTI ONS

1D CUSTOVER AMOUNT
1 Jim 100. 00
2 John 1200. 00
3 Tom 49. 99
4 Jim 99. 95
5 Tom 42. 00

Integrating the Java Object Model

JFunctions and DynaBeanFunctions

Java methods can be regarded as functions in the mandarax sense: they take objects (= terms) as
input and return another object. The object that receives the method can just be considered as
another parameter. For instance, when sending i ndexOf (t xt) to aString, the associated
function has the two parameters{ aSt ri ng, t xt} and returns an | nt eger instance.

This simple principle is supported by the Mandarax class
org. mandar ax. kernel . met a. JFunction. A JFunction wraps a java method. A
JFuncti on is executable — is all parameters are concrete objects (constants and not variables or
complex terms), the associated method is invoked and the result returned. For instance, if we had
a complex term indexCf (“abc”,”a”) (with i ndexOf being the function wrapping the
String.indexOr () method), the term could be simplified to the constant term “0” using
reflection.

18/41

The Mandarax 3.0 Manual

In version 2.2 a related implementation named DynaBeanFunct i on has been added. Such a
function is useful in order to integrate accessor methods in map like objects. Instead of having one
method per property there are generic methods that take the property name as parameters. Often
the methods are stored internally in a map and the property name is used as the key. A
DynaBeanFunct i on is defined by a method (with one string type parameter) and a string (the
property name).

JPredicates

In a similar manner, methods returning a boolean value can be considered as predicates. Such a
method associates the object that receives the method and the parameter. For instance, consider
the method equal s() defined in Qbj ect. An expression obj 1. equal s(obj 2) is interpreted
as a fact objl=obj2. If both objects are known, the fact can easily be verified by invokingequal s
on 0bj 1 with the parameters { obj 2} and check whether the resultist r ue.

Example
Consider the following situation:

e Personisaclasswith aproperty nane (equipped with the associated set- / get methods)
» =isthe predicate wrapping Cbj ect . equal s()

e get Nane() isthefunction wrapping Per son. get Nane()

* Consider the following rule: if x.getName()="George Bush” then x is very important

When issuing a query like “1s object <George Bush> very important”, the inference engine can replace “x” by
(the instance of Person!) “<George Bush>", apply theget Nane() method that yields (the string!) “ George
Bush”, and invoke equals. Thisyieldst r ue, therefore the prerequisite has been proved and the answer isyes (he
isimportant indeed).

AutoFacts

AutoFacts are generic clause sets. AutoFacts (class or g. mandar ax. uti | . Aut oFact s) facilitate
the task of integrating facts generated from data into the knowledge base at query time . The basic
idea of auto facts is to take one or many predicates and a map associating types (java classes) with
instances (collections). AutoFacts will then investigate all combinations of those instances, apply
the predicate(s) and return a clause if this yields true. Therefore the predicate must be executable
(see Using the Semantics on page 11).

Example

Assume we have an instance af of a subclass of Aut oFact s with get Ext ensi on returning (thel nt eger
instances) 1,2 and 3for | nt eger . cl ass. Now assume that we performaf . cl auses(1<x, nul |), where
1<x standsfor the fact consisting of thel nt Ari t hmet i ¢. LESS_THAN predicate, a constant term wrapping the
integer 1, and avariable term of the typel nt eger named "x". Then the iterator returned iterates over two facts:
“1<2” and “1<3". If weperformaf . cl auses(x<y, nul |') (two variables!), the iterator iterates over three
facts“1<2”, “1<3", “2<3". Thiswill also work if the parameter(s) contains functions (with a known semantics),
e.g., theiterator returned by af . cl auses(x*x<x+x, nul |) (where* and + stand for

the respective function defined as static membersinl nt Ari t hret i ¢) will iterate over one fact only: 1* 1<1+1.

19/41

The Mandarax 3.0 Manual

If cl auses() is used without parameters, the set of facts iterated is defined as follows:

® The predicate of each fact must be in the array returned by get Pr edi cat es() .

® For each type of any slot of the predicate, the extension is computed, and a fact is built for
each combination of these extensions. The predicate is then executed and the fact is only
returned if this yields true.

Example

If get Predi cates() returns{I nt Arithmetic. LESS_THAN, I nt Arithmeti c. EQUALS},
and the extension for | nt eger . cl ass isdefined as{1,2,3}, thencl auses() returnsan
iterator iterating over the following facts: “1=1" ,”2=2" ,“3=3" ,“1<2", “1<3" and “2<3".

The Mandarax Libraries

The mandarax lib packages contain a rich set of predefined functions and predicate. This includes
standard functionality for integer and double arithmetic and for the manipulation of text and
dates. These predicates and functions can be accessed as static members of the following classes:

® org.mandarax.lib.math.IntArithnetic

* org.nandarax.|ib. mat h. Doubl eArithnetic
® org.mandarax.lib.text.StringArithnetic
® org.nmandarax.lib.date.DateArithnetic

In addition, there is a cut predicate that implements the cut functionality used in logic
programming. Cut should be used with caution only be people who understand logic
programming — cut prunes the derivation tree and can therefore have several side effects.
Furthermore, cut is not supported by all inference engine implementation. In particular,
Resol uti onl nf er enceEngi ne4 supports cut.

The XKB XML Interface

Managers and Drivers

The XKB package(s) provide support to serialize knowledge bases using XML. The XKB packages
use the JDOM library that is not part of the JDK distribution’, but can be obtained for free from

www.jdom.org.

In version 3.0 development for XKB has stopped. Support for newly introduced features (such as
named slots) will not be added to XKB. The ZKB module should be used instead.

9 Although JDOM has been accepted by the Java Community Process (JCP) as a Java Specification Request
(JSR-102).

20/41

The Mandarax 3.0 Manual

The basic functionality of the interface is described by the interface
or g. mandar ax. xkb. Dri ver. The driver has an i nport Know edgeBase() method that
expects a (jdom) document parameter and returns a Know edgeBase, and an
expor t Knowl edgeBase() method that works the other way around. Both methods may throw
an XKBException. In addition to these methods, a driver supports to a certain extend
introspection: there are various methods returning boolean indicating whether the driver
supports a certain feature of not. The driver also declares a get DTD() method returning a string
indicating where the DTD of the supported XML format is defined.

The driver is usually wrapped by an XKBManager. The manager has several convenience
methods, e.g. to read (write) a knowledge base from (to) a stream, a reader/writer, a URL or file.
The XKB manager also allows users to plug-in their own components used to parse XML.

The RuleML Driver(s)

The or g. mandar ax. xkb. rul em package contains drivers for the XML format defined by the
RuleML group. Currently only the latest versions RuleML 0.8 and RuleML 0.8.1 are supported,
the implementing classes are Rul eM_0_8Dri ver and Rul eM.0_8_1Dri ver. Note that this format
is minimal, and a lot of features cannot be mapped into this format. In particular, RuleML
supports neither functions nor types! The author works with the RuleML group and hopes that
later versions will have more expressive power. The difference between both RuleML drivers is
that the 0.8.1 driver supports queries.

The Generic Driver and How to setup your own Driver.

The or g. mandar ax. xkb. f r amewor k package contains a little framework that can be used in
order to produce drivers very easily. The key idea is that there is a class Generi cDri ver that
forwards most of the work to XMLAdapt er s. The adapters know how to convert an object to a
(jdom) element and vice versa. The names of the respective methods are export Obj ect and
i mpor t Cbj ect . We pass a reference to the generic driver with this methods so that the adapters
can delegate the export / import of certain “sub objects” back to the driver using one of the
adapter finder methods in Generi cDri ver. The driver will then locate the appropriate adapter
in its registry and the adapter can delegate the task to this adapter. In order to locate adapters,
adapters publish a symbolic name (usually a constant like Generi cDri ver. RULE for adapters
importing/exporting rules) and the name of the associated XML tag.

In order to facilitate the implementation of adapters we provide two abstract super classes,
Abstract XM_Adapt er and CachedXM_Adapt er . The first class implements some “s hortcuts”
for exporting / importing children objects/elements. The purpose of the second class is to
identify certain objects. For instance, consider the case that we have three facts sharing the same
predicate. Using a subclass of cached adapter we can make sure that there is only one predicate if
we read the facts from an XML file. This makes sense: e.g. editing the name of the shared
predicate in a graphical user interface should apply to all facts. This is achieved by storing an
additional unique object id attribute. The identification of objects happens in a map. By default,
maps identify keys using equal s() . But the map interface does not enforce this, there might be
implementations identifying objects using ==". A cache instance is passed to the first adapter, if
one needs a special cache — this is the place to implement it.

10| jke the “Identity Dictionaries” in Smalltalk.

21/41

The Mandarax 3.0 Manual

The generic driver does not (yet) publish the DTD of the associated XML format. We are currently
working on a modular DTD definition where each adapter publishes his part of the DTD.

There is one adapter for objects. Since constants are more or less wrappers around objects, we
have to address the issue of general-purpose java serialization. The default bean serializer
(XMLAdapt er 4Chj ect s) uses bean introspection to serialize any kind of objects. However, there
are limitations. For instance circular objects graphs are not supported. If a certain property of an
object must not be serialized, one can use a Beanl nf o object to describe the serializable aspects
of the respective object. We are aware of the serialization support in JDK 1.4 and will integrate
this functionality one JDK 1.4 is the established standard'.

The following example shoes how to set up a driver using the GenericDriver framework.

Example

i nport org. mandar ax. xkb. f ramewor k. *;
public class MyDriver extends GenericDriver {

/1 Constructor.

public XKBDriver_1_0() {
super () ;
initialize();

CoOoO~NOO D WNE

/1 Initialize the object.
10 /'l Use sone default adapters and a special adapter for facts.
11 private void initialize() {

12 install (new XM_Adapt er 4Conpl exTernms());
13 i nstal | (new XM_Adapt er 4Const ant Terns()) ;
14 instal | (new MySpeci al Adapt er4Facts());
15 ..

16 1}

XKB versus RuleML

The XKB1.0/ XKB1.1 driver is not compatible with the current RuleML standard (RuleML 0.8
and 0.8.1, respectively). The reason is that RuleML currently only supports very few of the
features implemented by Mandarax. In particular, this applies to the following features:

Typing

Complex terms and functions

Clause sets (only single facts are possible)
Integration of SQL data sources

Rule bodies connected by OR.

AR

However, we have tried to design the top-level elements in a way that makes them compatible
with RuleML 0.8. This will at least facilitate the task of migrating sources between the two
formats, and to implement drivers for future RuleML versions.

This top-level compatibility includes the following aspects:

11 Y et another possibility isthe classical object serialization and the embedding of the (binary) data, see
javaworld tip 117 (http://www.javaworld.com/javaworld/javati ps/jw-javatipl17.html 2tip) for details on
how to embed binary datain an xml document.

22/41

The Mandarax 3.0 Manual

1. The<i np>,<_head> and <_body> tags are used for rules.

2. Asin RuleML, the <and> tag is used inside the <_body> tag, but alternatively, the <or >
tag can be used as well. While the <and> tag is optional in RuleML, it is mandatory in
XKBL1.0, even if there is only one prerequisite.

3. The <at o> tag is used for facts (and prerequisites and conclusions in rules).

4. The <_opr > tag is used for predicates. However, RuleML has a subtag <r el > inside
<_opr>. XKB1.0 has other tags indicating the type of predicate (JPredi cate,
SQLPr edi cat e or Si npl ePr edi cat e) and the respective properties.

5. The <i nd> tag is used for constants. However, while the RuleML tag is flat, the XKB1.0
tag has children indicating the type and the value of the constants. The value tag
represents a serialized java object or primitive and is therefore a “deep” tag itself.

6. The <var > tag is used for variables. However, while the RuleML tag is flat, the XKB1.0
has children indicating the type of the variable. The name of the variable is stored as
attribute.

The ZKB Framework: An Alternative XML interface
Overview

In Mandarax version 2.2, an alternative persistence interface called ZKB has been introduced.
The Z in ZKB refers to the use of ZIP compression technology. The main reason to introduce ZKB
was that the XKB framework is responsible for general-purpose object serialization. While ZKB
still uses XML to represent knowledge bases and items like facts, rules and terms, the serialization
of references objects is delegated to a separate object called Object Persistence Service (OPS).

The purpose of an OPS is to generate names for objects, the interface is similar to a JNDI context.
The XML document representing the knowledge base uses these generated names to represent
objects, and the OPS binds objects to these names. Furthermore, the OPS can export the bindings
to a stream, and import them from a stream. Finally, the OPS has a lookup method that can be
used in order to lookup objects by name. Mandarax contains two OPS implementations: one
based on binary serialization, and one based on XML object serialization' .

This separation results in two files that are needed to represent the knowledge base: the RuleML
like XML file representing the knowledge base, and a (binary or XML) “re source” file containing
the serialized objects references by the knowledge base. The ZKB manager simply combines these
two files into one using zip compression. A third file containing meta information (e.g. about the
OPS used, version info etc) is part of the zip file as well. Note that a similar approach is used in
some office packages.

The ZKB Manager

Application programs interact with ZKB via the ZKBManager . This class defines simple methods
to export / import a knowledge base from / to a file. Moreover, an additional object called
attachment can be saved together with the knowledge base. As this object can be a container, this
means that many associated objects can be made persistent together with the knowledge base.

2 Thisrequires JDK 1.4 or better.

23/41

The Mandarax 3.0 Manual

The following code listing shows how to set the OPS, and how to export / import a knowledge
base.

ZKBManager zkbMgr = new ZKBManager ();

/1 configure zkb nanager

/1 next line is optional — specifies xm representation of the kb
zkbMyr . set Driver (new ZKBDriver_1 0());

/'l set OPS — use binary serialization

zkbMgr . set Ops(new Bi narySeri al i zati onOPS());

/'l get kb from sonewhere

Know edgeBase kb = ...;

/1 where to save (using a nore general streamis al so possible)
10 File f = new File("kb.zkb");

11 /'l export — 1 line !

12 zkbMyr . expor t Knowl edgeBase(f, original);

13 /1 import — 1 line !

14 kb = zkbMyr. i nmport Know edgeBase (f);

OCOoONOOUID_WNPE

ZKB versus XKB

In ZKB the task of serializing objects is completely outsourced to standard java technology. This
makes it the better choice in particular if the object model references by the knowledge base is
complex (e.g., if it has circular references) . However, referenced objects may have to satisfy
certain prerequisites to be handled correctly by the OPS like implementing the Seri al i zabl e
interface (binary serialization OPS). The XML serialization OPS only works with JDK 1.4 or better.
At least binary serialization is not a suitable technology for long-term persistence of objects —
changes in the class definitions might make the respective files useless.

Implementing a Custom OPS

There are situations when it makes sense to implement a custom OPS. A typical case would be
making data sources (references in SQL clause sets) persistent. In many enterprise solutions, such
data sources are obtained using JNDI Instead of serializing the data source it would be more
useful to implement an OPS that associates the data source with its JNDI name.

The Mandarax JDBC Driver

The Driver Design

The Mandarax JDBC driver provides an interface applications can use to connect to a mandarax
knowledge base as it was a (relational) database. Access to the knowledge base is read only.
While it is rather easy to map SQL queries to mandarax queries there is no natural SQL counter
part for mandarax functionality such as inserting / updating rules.

The JDBC driver translates SQL queries into mandarax queries, computes mandarax results sets

and converts them back into SQL result sets. This translation is based on the following
assumptions:

24/41

The Mandarax 3.0 Manual

1. Mandarax predicates are considered as “tables”. Therefore, predicate names (at least for
predicates used in queries) must be unique”. This is not enforced by mandarax.

2. In the database meta info, predicates are tagged with a special table type 'PREDICATE' .

3. SQLPredicate term slots are considered as “columns” New in mandarax 3.0 is the
possibility to name slots using the set Sl ot Names() method in predicate. By default, slot
names are generated and the names used are slotl, slot2 etc. Note that only the newer ZKB
persistently mechanism will save slot names correctly.

4. The mandarax adds columns automatically to the result set. Currently, there is one pseudo
column, the values in this column represent the derivation that has been used in order to
compute the respective result.

5. The mandarax JDBC driver supports only one table per query, in particular joins are not
supported. Support for joins will be added later, there is a natural translation from joins to
mandarax queries with multiple query facts.

Obtaining a Local Connection

A local connection is a connection within the current VM instance. A local connection can be obtained as
follows:

16 import java.sql.*;

18 /1 load driver

19 Cl ass. for Nane(" or g. mandar ax. j dbc. Dri ver| npl");

20 /1 get connection

21 Connection con = DriverManager. get Connecti on("j dbc: mandar ax: zkb: kb. zkb") ;

Mandarax URLs start with ' j dbc: mandar ax' followed by a sub protocol handler indicating how
to load the knowledge base and a parameter indicating the location of the knowledge base. The
following table shows the currently supported sub protocol handler.

Driver URL pattern Description

j dbc: mandar ax: zkb: The knowledge base is loaded from the given file or url as
<file_or_url> ZKB knowledge source.

j dbc: mandar ax: xkb: The knowledge base is loaded from the given file or url as
<file_or_url> XKB knowledge source.

j dbc: mandar ax: rul en : The knowledge base is loaded from the given file or url as
<file_or_url> RuleML knowledge source.

j dbc: mandar ax: r ef : The driver tries to instantiate the class with the given name,

<factory_class: paranm> tries to cast it to Know edgeBaseFactory and calls the
method get Knowl edgeBase(String paranj.

Table4 Mandarax JDBC sub protocols

Obtaining a Network Connection

8There are various polymorphic predicates in the lib packages. These predicates are usually not used as
query predicates.

25/41

The Mandarax 3.0 Manual

A network connection is a connection to a mandarax server located on a different (server)
computer. The network protocol used in htt p. On the server side, mandarax is deployed as
servlet. The ANT build script has a target named JDBC. This target creates a war file. This war file
can be easily deployed by copying it into the webapps folder of the web server (e.g., Tomcat 4).

The network protocol used can be replaced easily and in fact mandarax contains a second
protocol implementation: a protocol that “fakes” a network. This is mainly used for testing the
serialization mechanism, This mechanism is based on JDK 1.4 XML object serialization. The URL
syntax for network URLs is as follows:

j dbc: mandar ax: net : <l ocal _subpr ot ocol >: </ exanpl edat a/ exanpl e-fani | y. zkb>@server-url >

For instance, if the war file built by ant is deployed on a local tomcat installation, the zkb family
knowledge base can be access using the following URL:

j dbc: mandar ax: net : zkb: / exanpl edat a/ exanpl e-fani |l y. zkb@tt p: / /1 ocal host: 8080/ mandar ax-
server/j dbcserver

The server can be tested using a browser and pointing it to the following URL:
http://1ocal host: 8080/ mandar ax- server

To use the local (fake network) protocol implementation, use URLs with the net token (as
opposed to local URLs) but without the @ser ver - ur | > token.

@ A remark on firewalls and proxies. The network driver has been design to work with proxies. In
order to support proxies, the proxy details (address, user information) must be passed to the
client JVM as system properties. See the java documentation for details.

The JDBC build target builds a directory bui |l d/j dbc/client that contains all libraries
needed by the client.

Issuing Queries

A query can be issued using either a statement or a prepared statement. Once the driver is loaded
and the connection has been established, the mandarax knowledge base can be queried like a real
relational database such as Oracle or MySQL. In many situations using prepared statements is
recommended for two reasons: the SQL statement is parsed only once (this yields advantages in
terms of performance) and there is a simple and convenient API to 'inject’ real objects (i.e., objects
that are neither strings, numbers nor dates and therefore difficult to represent as literals) into the
SQL statement. The following SQL syntax features are currently supported by the driver:

SELECT *

SELECT <colum [ist>

SELECT DI STI NCT

SELECT COUNT(*).

WHERE clauses with simple conditions containing the following operators: =, !=, <, > |,

<=, >=

6. WHERE clauses with the LI KE operator (pattern matching), the wildcard characters are _
(underscore) and ?. Escaping of wildcard characters is supported as well.

7. Complex WHERE clauses with multiple conditions connected by AND, OR and NOT. Brackets

must be used if AND and OR are mixed.

Gl L

26/41

The Mandarax 3.0 Manual

8. GROUP BY using the aggregation functions SUM MAX, M N, COUNT(*) and AVG
9. HAVI NG
10. ORDER BY with ASC and DESC direction modifiers.

In particular, the following features are not (yet) supported:

Nested SELECT statements.

I Noperator (use a OR group instead)

BETWEEN (use two simple comparison conditions instead)

Non aggregation functions such as UPPER, LOVER and string concatenation (| |)
Pseudo columns such as SYSDATE and USER

Ol LN

Note that many database applications use SELECT COUNT(*) queries to estimate the time and
the resources needed to answer a query. In case of mandarax, answering the SELECT COUNT
(*) query is as expensive as answering the respective SELECT query itself and iterating over
the entire result set!

The JDBC Example Application

The jdbc example package (or g. mandar ax. exanpl es. j dbc) contains an executable class
Mandar axJdbcCl i ent DenpApp. This class is an ad hoc query tool that can be used in order to
query mandarax knowledge bases using SQL. The tool supports the following features:

1. An editable URL field with a number of predefined URLs. Some of these URLs are based on
(zkb, ruleml, xkb -) file. These files will be generated if necessary when the application is
started.

2. Editable field for SQL queries, a list of predefined queries is available as well.

Database meta (tables and columns) data can be displayed as result sets.

4. The derivation pseudo column is supported. To display the derivation, select a row in the
result set and press the <Show Der i vat i on> button, or double-click on the row. Note that
the derivation can be null (e.g., this is the case if the SELECT statement contains a GROUP BY
clause).

®

27/41

The Mandarax 3.0 Manual

g [Mandarax _JDBC ciie| JDEC client Demo AJJ ication

Exn Run Quenr Fetl:h All Tables (Predll:ates) Fetch All Columns Gluts) Shuw Derl\ratlun Test AII

URL: jdbcmandaraczkb:example-family.zkb -
Queries: (select * from is_oncle_of >
-result set

nephew oncle |_ rmandara. pseudacols. derivation [
Frank
j|[Frank
Frank
Frank. |
Frank <3 mandarax de
Frank |<a mandarax de
| |{Jens |<a mandarax de
Jens |<at mandara de
Jens Lutz <@ mandarax de
Jens |Wernher |xa mandarax de }
| kb info

Exarmple based on a knowledge base loaded from a zkb file.

The kb file i5 example-family. zkb

L =)

Figure 3 The JDBC Client Demo Application

Using Mandarax JDBC with Generic Database Clients

The mandarax jdbc driver has been tested successfully with the following generic (JDBC based) database
clients:

1. OpenOffice 1.1
2. SquirreL SQL client 1.1
3. DBVisualizer 3.3.1

Integrating mandarax is usually straight forward, it isimportant that al libraries used by mandarax arein
the class path used by the respective client.

Miscellaneous
Logs

Mandarax supports comprehensive logging. The mandarax logging support consists of a
hierarchy of log categories defined as constants in or g. mandar ax. ker nel . LogCat egori es,
several log levels (like “error”, “warn”, “debug” and “info”) and log appenders (like the console,
text files, xml files, network resources or OS log targets). The mandarax log categories are:

1. Cat egories the inference engine

Log
1.1. MANDARAX. | E

1. 2. MANDARAX. | E. LOOPCHECK
1. 3. MANDARAX | E. RESULT

1. 4. MANDARAX. | E. STEP

1. 5. MANDARAX. | E. UNI FI CATI ON

28/41

The Mandarax 3.0 Manual

o

Categories for the know edge base
MANDARAX. KB

MANDARAX. KB. ADD

MANDARAX. KB. REMOVE

MANDARAX. KB. EVENT

MANDARAX. KB. MOVE

category for test cases

MANDARAX. TESTS

category for the SQL integration
. MANDARAX. SQL

category for the logic factory

. MANDARAX. LF

category for the XKB xml interface
. MANDARAX. XKB

category for the JDBC driver

. 1. MANDARAX. JDBC

o

o o

I
NCOCUODARCWENNNNNE

The actual logging is delegated to a log service provider framework. These frameworks are very
flexible, and can be configured by scripts, property files or xml files. In older mandarax versions
(prior to 2.3.1) there was only one 'hard coded' log service provider, apache log4j. This has been
redesigned using a design based on abstract loggers and logger factories. Factories for two log
service providers, Apache Log4] and the JDK j ava. util .| 0ggi ng package, are part of the
mandarax distribution. The default log service provider is selected according to the following
rules:

1. Mandarax looks up the System property or g. mandar ax. | ogger. If there is such a system
property and the property values is the name of a class implementing the LoggerFactory
interface, an instance of this class will be used as default factory.

2. Iforg. apache. | 0og4j . Logger is found in the class path, log4j will be used.

3. (else) if java. util .| oggi ng. Logger is found in the classpath (i.e., JDK version 1.4 or
better is used), JDK logging will be used.

4. If none of the above rules can be applied, a 'dummy’' log implementation that outputs all log
entries on the console will be used.

Test Cases

The mandarax library contains numerous test cases organized in packages starting with “t est ”.
These packages are not required in an application using mandarax! We use the well known JUnit
framework for testing, each package contains one or many classes ending with “Tests”. These
classes have a main method that invokes the (swing) junit test runner. The package
test. org. mandar ax. t est support contains the class Test Al | . This class is the “super test
suite” that invokes the test runner for all mandarax tests. There are currently (Mandarax 3.0) 779
test cases in the test suite.

The test cases create numerous test files. These file are stored in thet npt est dat a folder.

29/41

The Mandarax 3.0 Manual

Modules

Mandarax modules consist of packages. There are 'depends on' rel ationships between modules. If no other
modules depend on a certain module, the module packages can be safely removed from the mandarax
distribution if aslim distribution is wanted and the respective functionality is not needed.

Module Name Packages Description Depends on
kernel kernel*, lib*, util* Mandarax kernel
reference reference* reference mandarax kernel
implementation
xkb xkb* XKB persistence/ mandarax kernel, sql
serialization
zkb zkb* ZKB persistence/ mandarax kernel, sql
serialization
jdbc jdbc* JDBC driver mandarax kernel, zkb,
xkb
sql sql* SQL predicates, clause mandarax kernel
sets and functions
tests test Test cases mandarax kernel, sql,
xkb, zkb
examples examples* Examples tests
Extensions
Oryx

Oryx is a graphical front end for mandarax. It supports verbalization of knowledge using Swing
and JSP based user interfaces. The design is modular and parts of oryx (for instance, editors for
queries, single rules, etc) can be used separately in applications. The component models used are
java beans / swing and jsp tag libraries, respectively. The oryx design is based on the flexible
MVC/ MVC2 design pattern.

Conceptually, oryx adds the concept of a repository. A knowledge base is associated with a
repository that contains “meta” information about predicates, functions, data sources, knowledge
verbalization etc. Oryx contains a number of examples illustrating the integration of knowledge
from SQL, JNDI and other sources.

30/41

The Mandarax 3.0 Manual

& Oryx Knowledge Base Editor
File Edit Wiew Tools Examples Links Deploy Help

@® DadD@E ORI @I £ %

=» Kknowledge | ? Queries | [Configure database forexample $° Aboutthis example

[T exists special risk
= it special riskfor & share, & visk (reason: & descrotion then there is a special risk for & share

T has risk
=P ifthe the maximum of the country rating of & share and the sector rating of share is between 0 and 4 &
=3 ifthe the maximum of the country rating of & share and the sector rating of 2 share is between 0 and 4 4
=P ifthe the maximurm of the country rating of & share and the sector rating of & share 15 between 5 and 7 4
=P T8 iz less than ar equals the maximurm of the country rating of 2 shake and the sector rating of 2 share
=P if special risk far & share a Hsk (reason: & descrption then & share is a a risk risk investment

3 has special risk

! Facts fram database for: has special risk

0N

| Porfolio Risk example |

Figure 4 The Oryx Knowledge Base Editor

File Edit

@ L & W

if person 2 is the father of person 7 and person 3 is the father of person 2 then person 3 is -
the grandfather of person I

= if person 2 is the father of person 7 and pe:
E Y person 2 is the father of person 1
Y person 2is the father of person 2 predicate: s grandfather of J
B Y person 2is the grandfather of person
D person § terms: wvalue | _type | kind ||
O a sperson 1= |class java.la.. variable
pErson =person 3= class javala._. wvariable
negated:
s | [»

ES% H S *Edit fact: person 2 is the grandfather of person 7

Figure5 The Oryx Rule Editor

Mandarax ECA

Mandarax ECA (Event, Condition, Action) is an extension that can be used to program reactive agents.
The system is event driven: events have registered event listeners (handlers), these listeners query the
knowledge base for the next action that must be performed. Both the event and the action mechanism are
designed for distributed systems. There is a Mandarax ECA portfolio agent example application that uses
POP event sources and an SMTP actions. Java Messaging Service (IMS) would be a suitable infrastructure
for real world applications based on Mandarax ECA. More details on Mandarax ECA can be found on the

mandarax home page.

Appendix A — Required Libraries

31/41

The Mandarax 3.0 Manual

name version URL license description
Apache 113 http://jakarta.apache.org Apache open Log framework, see the
log4j /1 og4j source license class LogCategories for
alist of log categories.
Apache 21 http://jakarta. apache.org Apache open Data structures
commons / comons source license (collections and
collections iterators)
jdom 1.0 www. j dom org Apache-style Easy to use java xml
beta 7 open source interface, required for
license the XKB packages.
Requiresitself JASP 1.1
junit 3.7 WWw. j unit. org IBM public Test cases, not required
license for runtimes without
thye test packages
javax.sgl JDK 1.4 | j ava.sun.com See DK license | Not in (older) standard

J2SE digtributions but
required by the XML
package.

Table5 3rd Party Libraries

32/41

The Mandarax 3.0 Manual

Appendix B - Diagrams

Functi on P Construct or ¢ Predi cat e
Know edgeBase —P Know edgeOmner Semant i csSuppor t
A A
Ext endedKnow edge
Base Cl auseSet
A
Rul e —p Cl ause
A
Ter nCont ai ner < Fact Term
A T A
Prerequisite
Conpl exTerm Const ant Ter m Variabl eTerm

|:| interface |:| class

—p implements/extends

Figure6: Core mandarax interfaces (kernel package) and their (extends) relationship

33/41

The Mandarax 3.0 Manual

sql . SQLCl auseSet [kernel . Cl auseSet «@— util.AutoFacts
kernel .
kernel . Rul e Hp» kernel.d ause <— ker nel . Fact — Prerequisite
ref erence. Rul el npl ref erence. Fact | npl < Pre:E;Sir:iani mpl

E interface E class

—p implementyextends

Figure 7: Mandarax Clauses and Clause Sets (package names without or g. mandar ax

pr efix)

functions in |lib packages:

lib.maths. I ntArithnmetics. MAX
lib.maths. I ntArithnetics. PLUS

f

lib.Abstract Functi on

«

sql . SQLFunction

ker nel . Function

17

ker nel . meta. JFuncti on

«

v

sql . SQLPr edi cat e

ker nel . Constructor

ker nel . meta. JConst ructor

>

f

ker nel . Si npl ePr edi cat e

ker nel . Predi cate

17

ker nel . meta. JPredi cate

>

lib.Abstract Predicate

?

predicates in |lib packages:

lib.maths. I ntArithnetics. EQUALS
lib.maths. I ntArithmetics. GREATER_THAN

interface
|:| class

— implements/extends

Figure 8: Mandarax Predicates and Functions (package nameswithout or g. mandar ax

prefix)

34/41

The Mandarax 3.0 Manual

kernel . Term

!

ker nel . Const ant Term ker nel . Conpl exTer m kernel . Vari abl eTerm

! ! !

ref er ence. Const ant Ter ni npl ref er ence. Conpl exTer ni npl ref erence. Vari abl eTer ni npl

|:| interface |:| class —> implements/extends

Figure9: Mandarax Terms (package names without or g. mandar ax prefix)

35/41

The Mandarax 3.0 Manual

Appendix C — Project History

Version @ Date

3.0

Nov
2003

Features

1.
2.

o1k

New JDBC Driver incl test cases and a demo application

Result set filters with SQL like ORDER BY, GROUP BY and WHERE
functionality

Minor bugfixes mainly in the ZKB and SQL packages

Support for names slots in predicates.

Knowledge bases expose the predicates used in knowledge within the
knowledge base (new predicates() method).

2.2

21

12 Feb
2003

23 Nov
2002

DynaBeanFunction

ZKB persistency module

New example using a relational database
Knowledge bases support comparators
Cut

DefaultlnferenceEngine

ResolutionInferenceEngine4
AdvancedKnowledgeBase redesigned

2.0

31 Oct
2002

® N

ARSI L N i e

Negation ("negation as failure)

Resolutionl nferenceEngine3

Interface Prerequisite.

Pluggable semantic evaluation policy.

close() method in ClauseSetlterator , SQL ClauseSet and SQL Function

Some new methods in DerivationNode supporting a more detailed analysis of the derivation
tree.

Clause sets and query support additional properties, i.e. simple key value associations.
A new XKB driver (2.0) supporting the respective new features (close
connection flag, negation, properties).

1.9

1.8

1.7

18 Aug
2002

18 Jun

2002

23 May
2002

SN .

N =

SR BN

Bugfixes and testing related to serialization

Fully instantiated queries are now handled

A query result can also be complex term still containing variables
New interface ..kernel.Query and reference implementation ..reference.Querylmpl.

New rule ml driver supporting RuleML 0.8.1

ResultSetFilter and CachedResultSet .
The old inference engine has been re-organized to share as much code as
possible with the new implementation.

SQL Predicate supports now perform.

New JDBC like query interface, including a (JDBC 2 like) ResultSet interface.
Implementation of this interface by the ResolutionlnferenceEngine

Clause set method throw now a ClauseSetException.

The query methods in InferenceEngine throw now an InferenceException.

Inference engines can decide how to handle situation when looping over a
clause set leads to an exception.

36/41

1.6

3 Mar
2002

Ll o e

AN

The Mandarax 3.0 Manual

Migrated to log4j 1.1.3

Updated to JUnit 3.7

Uses Ant.

New package org.mandarax.xkb.framework with a modular framework
for XML interfaces, XKB driver supporting almost all mandarax features
is part of this package.

Functions based on SQL queries.

Systematic support for semantic evaluation in reference inference engine.
New interface org.mandarax.kernel.SemanticsSupport.

1.5

1.4

1.3

27 Nov
2002
13 Aug
2002

4 Mar
2002

New package org.mandarax.sql

Integration of xkb package (XML interface).

New lib packages integrating standard functionality for arithmetic,
strings and dates.

Plugin architecture + reference implementation of a loop checking
algorithm.

Support for rules with prerequisites connected by OR .

Causes keep now a reference to their clause sets.

Support for new (org.apache) log4j package names.

1.2

1.1

3 Dec
2000

14 Jun
2000

N

SRR O

8.

9.

New package org.mandarax.math.

Test cases support the current version of the junit test framework with
junit.* package names (instead of test.* package names).

New knowledge base implementation
org.mandarax.reference. AdvancedKnowledgeBase.

New package org.mandarax.examples.crm containing a comprehensive
example how to calculate discounts using a knowledge base and plain
data. to start the applet.

The package org.mandarax.demo has been renamed to
org.mandarax.examples.family.

New class org.mandarax.util. AutoFacts.

New utility class org.mandarax.util.LogicFactorySupport.

New utility class org.mandarax.util.ProofAnalyzer.

Fact, Rule, ComplexTerm, VariableTerm and ConstantTerm are now
interfaces, implementations of these interfaces are provided in the
org.mandarax.reference package, instances are now created using a
factory.

Log support using the library log4j

Clause sets fire events to notify listeners about changes

Knowledge bases fire events to notify listeners about changes

New interface ExtendedKnowledgeBase.

Reference inference engine plugin for unification algorithms, by default
Robinson's algorithm is used

Reference inference engine plugin for selection policies, two policies
(right most and left most) are provided

Extended support to use the java object model (new methods resolve() in
Fact and Term and perform() in Function and Predicate

Many classes are now serializable in order to support technologies like
persistency using serialization, RMI and Enterprise Beans

10. Performance improvements

37/41

The Mandarax 3.0 Manual

1.0 1Jan Project Launch.
2000

38/41

The Mandarax 3.0 Manual

Alphabetical Index
A

Aggregation function 14
Ant 4,26

Attachment 23
AutoFacts 19

B

Backward reasoning 10p.
Binary seriaization 24

Binary serialization OPS 24
Body 6
BUBBLE_EXCEPTIONS 13
C

Cache 17

Cardinality constraint 12
Classpath 57

Clause 8

Clause set 8p.

Clause set change event 9
Clause set listener 9

CLIPS 10

Complex term 6
Conclusion 6
Connection 16
Connection pool 17
Constant term 6

Custom OPS 24

Cut 15, 20

D

Data source 16, 24, 30
Derivation 13

Derivation node 13
DynaBeanFunction 19

E

Exception handling 13

F

Fact 6,9, 12

Filter pipe 14

Firewall 26

Forward reasoning 10p.
Function 6, 12, 30

G

GROUP BY 27
GroupBy Filter 14

H

HAVING 27

Head 6,9

Http 26

Http proxy 26

|

ILOG 10

Inference engine 7,9p., 12,16
Iterator 8

J

Java Messaging Service 31
Java method 18

JDBC 8, 12p.

JDBC driver 17, 24p.
JDK 1.4 XML object serialization

JESS 10

JFunction 18

IMS 31

INDI 23p., 30

Join 25

JPredicate 19

JSP 30

JUnit 29

K

Key 9

Knowledge base 8p., 16

L

Local JDBC connection 25
Log service provider 29
Logd4j 29

Logging 28

Logic factory 7

Loop checking algorithm 15
M

Mandarax ECA 31
Modules 30

Move clause sets 9

MVC 30

N

Negation asfailure 15p.
Network JDBC connection 26
(@]

Object Persistence Service 23

39/41

Object relational mapping 18
OrderBy Filter 14

Oryx 30

P

POP 31

Precise knowledge 9
Predicate 6,9, 12, 30
Prepared statement 18, 26
Prerequisite 6
Priorities 9

Prolog 10

Proxy 26

Pseudo column 25

Pull model 10

Push model 11
Push-pull adapter 11

Q

Query 10, 16

Query time 8,19

R

Reflection 18

Relational database 8,10, 12, 16
Repository 30

Result set 912

Result set filter 14

Results set 24

RETE 10

Rule 6,9, 12

RuleML 23,25

S

SELECT 26

SELECT COUNT(*) 27
SELECT DISTINCT 26
Selection policy 15
Semantics 11

Serviet 26

SMTP 31

SQL 8p., 11p., 24, 30

The Mandarax 3.0 Manual

SQL clause set
SQL clause sets 17
SQL function 17
SQL functions 17

SQL predicate 16p.

Statement 26

Sub protocol handler

Swing 30

System property 29

T

Term 6, 11p., 18
Term slot 25

Test cases 4

Threads 16

Tomcat 26
TRY_NEXT 13
Type 6

U

Unification algorithm

\%

Vague knowledge 9

Variableterm 6, 10

Verbalization 30
w

War file 26
WHERE 26

Where Filter 14
Wildcard characters

X

XKB 20, 23, 25
XML seridization 24
XML serialization OPS

z

ZIP compression 23
ZKB 23,25
ZKBManager 23

40/41

9, 17,24

25

15

26

24

The Mandarax 3.0 Manual

Bibliography

[DKSW 03] J. Dietrich, A. Kozlenkov , M. Schroeder , G. Wagner: Rule-based agents for the
semantic web. Electronic Commerce Research and Applications 2 (2003) 323—-338.

[Grand 98] M. Grand: Patternsin Java. Volume 1, A Catalog of Reusable Design Patterns Il lustrated
with UML. Wiley 1998.

[Wag 98] G. Wagner: Foundations of Knowledge Systems: With Applications to Databases and
Agents. Kluwer Academic Publishers 1998.

41/41

