
Integrating RuleML and OO

Dagstuhl-Seminar 02061 - Rule Markup Techniques

Date: 03 FEB 2002 - 08 FEB 2002

By Jens Dietrich / Polytechnic of Namibia

Contact: jens.dietrich@unforgettable.com

Overview

l Rules and the Enterprise Computing
Landscape

l SQL & Co: Integrating Facts
l Clauses versus Clause Sets

l Types
l MetaInfo

Rules in the Enterprise
Computing Landscape 1/4

l The development of Enterprise Computing Tools focuses
on a principle called ‘separation of concerns’, i.e.
separate software modules are responsible for the
various aspects of computing

l This has to be seen in the context of the industrialization
of software making

l ‘Aspects’ include Persistency, Transaction management,
Security etc

l An important issue to make this approach work is the
existence of open interface standards like SQL, CORBA
and XML based approaches such as SOAP (XML-RPC)

Rules in the Enterprise
Computing Landscape 2/4

l The domain model is the result of a design process
(using UML or related approaches) and is implemented
by classes (their respective instances) using an OO
language such as Java, Smalltalk, C++ or VB.

l Business Rule management could be yet another
aspect, separating business logic from business objects
(the domain model).

l In reality, the UML model is most often ambiguous (in
particular w.r.t. semantics of the objects described) and
inconsistent with the implementation.

Rules in the Enterprise
Computing Landscape 3/4

l Therefore, a rule module should focus on high level rules
governing core processes of the respective software

l The domain model contains logic (behavior of its objects)
that should not become responsibility of the rule module,
e.g. a get cache flow method in a loan object. In
particular, it is not the purpose of a rule module to do
math!

l Advantages of such modules are obvious: software can
keep up with (changing) business processes, entering
the slow and expensive software development lifecycle
can be avoided, rules are maintained as ‘data’

Rules in the Enterprise
Computing Landscape 4/4

l It tends to be difficult to manage large sets of rules,
visualization / user interfaces are a real challenge, most
useful (acceptable) rule systems will be rather small, but
operating on large sets of data (SQL result sets, web
data)

l Rule management systems should not try to replace an
expert and require two new experts!

l Reasoning is mostly initiated by the client (e.g., a web
store customer transaction), ‘pull’ favors a goal driven
reasoning.

SQL & Co: Integrating Facts 1/4

l This applies in particular w.r.t. data storage. Redundancy
of data should be avoided (except replication for
performance boosting – ‘caching’). In particular, facts
built from db data should not be stored separately

l Rule modules must integrate with other modules in the
Enterprise Computing Landscape

l Data sources that should be integrated include relational,
object-relational, object and XML databases accessed
using SQL, ODMG OQL and XML / EJB queries.

SQL & Co: Integrating Facts 2/4

Example:
If favorite color of the customer is red offer product ABC to the customer

This rule operates on a set of facts like:

the favorite color of customer Jim is red;
the favorite color of customer Tom is blue;
the favorite color of customer John is green;
…

This set of facts is usually large (imagine companies like
Amazon), and available in the companies relational
database (table/view customer_pref_colors with columns
customer and color).

SQL & Co: Integrating Facts 3/4

Example (ctd.):

l Due to the size of the database, we cannot hold all facts
permanently in memory.

l What is more, the fact base needs to be up-to-date at
query time since the database is part of a distributed
(multi-client) environment.

l Therefore services like indexing, concurrency control,
transaction handling must be added to knowledge bases
to deal with this problem. On the other hand, those
features are already implemented in the data storage
module (the RDBMS in this case).

SQL & Co: Integrating Facts 4/4

Example (ctd.):

l Solution: keep facts (although not as facts but as records) in
the database and integrate them ‘on-the-fly’. The knowledge
base would then have a ‘fact set’ rather than a fact to
represent knowledge:
FACT_SET(SELECT CUSTOMER,PREF_COLOR) FROM
CUSTOMER_PREF_COLORS)

l Besides the SQL query, additional information must be
provided to issue the query and to build facts: The kind of
database, kind of protocol, versioning and login information
(URL, username), info how to build facts from records.

Clauses vs Clause Sets 1/8
l This is part of a more general problem: are facts

integrated as explicit sets or as descriptive sets.

l Like in math: {1,2,3} vs {n|exists i: i*i=n}

l Def: a clause set of is an object that allows clients to
loop over its clauses. Therefore the implementation
of a clause set in a rule processing system must
provide access to the next clause, and ways to find
out whether there are more clauses available. This
implies data structures similar to java iterators or
enumerations and database cursors.

Clauses vs Clause Sets 2/8
Example 1 (ctd.): SQL Predicates

l The clause set is defined by a SQL query (the query
string itself + connect info)

l The predicate is the structure of the result set (the
table/view queried)

l Each row in the result set represents a fact from the
result set

l The clause set iterator is the cursor fetching rows
from the result set

Clauses vs Clause Sets 3/8
Example 1 (ctd.): SQL Predicates

Issues:
l Besides the connect info, a lot of additional (meta-)

information is needed like:
l Transactional info (can facts be built from a dirty

read)
l Caching info (can we cache facts for multiple

sessions, timeouts)
l Type Mapping Info

Clauses vs Clause Sets 4/8
Example 2: OR Rules

l The clause set is a rule with prerequisites connected
by OR, like if A OR B then C

l The clauses in the respective clause set are simply
the rules if A then C and if B then C

Clauses vs Clause Sets 5/8
Example 3: Interactive facts

l The clause set is a “shadow” fact F, at query time the
user is prompted whether F is a fact, if so, the clause
set is a singleton containing F, otherwise empty

l Issues: When a clause set is asked for its clauses,
contextual info should be provided (e.g. current
variable bindings or references to knowledge
containers)

Clauses vs Clause Sets 6/8
Example 4: Evaluating Objects

l In an OO environment (example: java), methods
(example: equals() defined in Object) returning
booleans are considered as predicates.

l A clause set is defined by the predicate and a set of
objects for each parameter type (incl. the type that
defines the method)

l The clauses are build by performing the method for
each combination of parameters and selecting those
combination where this yields true

Clauses vs Clause Sets 7/8
Example 5: Distributed Knowledge Bases

l The clause set is a query (with variables) + a
reference to another knowledge base/ inference
engine

l A clause set is defined by the combinations of
variable bindings associated with the result of this
query

l Concepts ala “collaborating agents” – experts ask
other experts

Clauses vs Clause Sets 8/8

l Clause Sets are downward compatible: facts and (and)
rules can be considered as singleton clause sets

l Clause Sets are extremely polymorphic objects, and
any XML standard that wants to support them must
accept this

Representing Clause Sets in XML

l At the end this could mean specs for some common
cases (SQL !!) plus general purpose custom clause
set tag with key-value parameters, perhaps plus a
reference to a URI where the meaning of this is
defined

Types 1/6
l Current Version of RuleML is not typed, but typing is

desirable for some reasons:
l Datasources and processing systems interfacing

with rule ml are generally typed: therefore using
RuleML to communicate results in loosing
information

l Typing is needed for rule processing systems in
order to integrate the semantics of the resp. types:
e.g. to compute 3+4 (which is 7 if both are integers
and might by 34 if both are strings)

Types 2/6
l Once we have agreed that typing is good to have,

which types should be chosen?
l Candidates: define our own type universe, take an

established type universe like SQL-92 types, or allow
types from any system and scope them (types like
SQL92:varchar or java:java.lang.String

l If an open approach is chosen, what about type
mapping if XML data is passed between various
systems. Type mapping is usually defined by
procedures and hard to be wrapped as XML. E.g.,
consider all the trouble related to type mapping
between RDBMS and OO (“paradigm mismatch”)

Types 3/6
Example
l The SQL predicate introduced above returns facts

where the SQL predicate associates two text typed
terms. Using SQL typing, the type is something like
SQL92:VARCHAR. If the type system used by the
rule base is Java (and that is the approach we are in
favor of), the first term repr. a customer. The
customer could be simply mapped to
JAVA:java.lang.String. But to take advantage of the
OO approach, one does not want to represent
customers as string, but rather as instances of a
Customer class.

Types 4/6
Example (ctd.)
l This mapping is a rather complex procedure and

might even include performing new queries to the
database.

Types 5/6
Question: Can the prerequisites of the following rules
be evaluated without having the respective facts in the
knowledge base?

l if true then something

l if a=a then something

l if 2+2=4 then something
l if “John” contains “h” then something

l If product.getPrice()<100 then something

Using Intercultural Typing + Clause Sets, rule
processing systems can integrate the semantics of the
systems they integrate

Types 6/6
Yet another Example:

l c .. a customer
l f .. a function defined by the SQL query

SELECT AMOUNT FROM CUSTOMERS WHERE NAME=?

l rule if 100<f(c) then grant discount of 10% to c
l No separate fact needed to verify this rule, the

prerequisite can just be evaluated using the known
meaning of f (=issue a query) and 100.

MetaInfo 1/3
Knowledge bases (or rule bases, rule containers ..) need certain
meta info that must be represented somehow when making them
persistent (e.g., XML RuleML).

l Versioning, history, user info
l Error handling
l Inference strategies

l Priority handling

MetaInfo 2/3
Exception Handling:

l If knowledge bases are integration platforms, many
things can go wrong (e.g., broken network connections)

l It should be declared whether certain exceptions are
critical or not. This would imply an on_error tag in the
xml representation

l Possible exception handler (not complete!):
• Ignore respective clause
• Ignore respective clause set

• Return default value (for exception in complex terms)

• Interrupt inference

• Log exception

MetaInfo 3/3
Inference Strategy:
l Inference strategies (e.g., non-monotonic inference)

does not only depend on the inference engine, but
also on the data structure of the knowledge base
(e.g., priorities)

l Example container data structures:
• Order clauses (clause sets) as they are

• Order clauses according to a given priority label

• Order clauses w.r.t. the number of premisses

• Order clauses w.r.t. the number of variables in the prerequisites

• Use more sophist. Order with major / minor sort keys

